Wednesday, July 1, 2009

The role of transposable elements in evolution

imageTransposable elements (TEs) are short DNA sequences that can jump around the genome creating new copies of themselves. All this jumping creates many mutations, from subtle regulatory changes to gross genomic rearrangements. In a review just published by Gene, Josefa Gonzalez and Dmitri discuss the role that TE-generated mutations play in adaptation. The potential adaptive significance of TEs was recognized by those involved in their initial discovery, but subsequently TEs were largely considered to be intragenomic parasites leading to almost exclusively detrimental effects to the host genome. The sequencing of the Drosophila melanogaster genome provided an unprecedented opportunity to study TEs and led to the identification of the first TE-induced adaptations in this species. These studies were followed by our systematic genome-wide search that revealed that TEs do contribute substantially to adaptive evolution in D. melanogaster. This study also revealed that there are approximately twice as many TE-induced adaptations that remain to be discovered. To gain better understanding of the adaptive role of TEs in the genome we clearly need to (i) identify as many adaptive TEs as possible in a range of Drosophila species, and (ii) carry out in-depth investigations of the effects of adaptive TEs on as many phenotypes as possible. One such study by Josefa Gonzalez and others was just published by MBE from our lab.

No comments:

Post a Comment