The news from the Petrov Lab at Stanford University and the blog posts by the members of the lab.
Tuesday, December 16, 2008
High functional diversity of Mycobacterium tuberculosis
Mycobacterium tuberculosis infects one third of the human world population and kills someone every 15 seconds. For more than a century, scientists and clinicians have been distinguishing between the human- and animal-adapted members of the M. tuberculosis complex (MTBC). However, all human-adapted strains of MTBC have traditionally been considered to be essentially identical. In a paper just published in PloS Biology Ruth Hershberg, Mikhail Lipatov, Dmitri A. Petrov, Peter M. Small, Marcus W. Feldman, Sebastien Gagneux and colleagues surveyed sequence diversity within a global collection of strains belonging to MTBC. They demonstrated that the members of MTBC affecting humans are more genetically diverse than was generally assumed, and that this diversity can be linked to human demographic and migratory events. Furthermore, they showed that MTBC bacteria are under extremely reduced purifying selection and that as a result of increased genetic drift, much of this genetic diversity is likely to have functional consequences. These findings suggest that the current increases in human population, urbanization, and global travel, combined with the population genetic characteristics of M. tuberculosis, could contribute to the emergence and spread of drug-resistant tuberculosis. This article was featured as a Science Journal Editor�s Choice.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment